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High-frequency fluctuations in temperature and velocity were measured at a height 
of 2 m above a harvested, nearly level field of rye grass. Conditions were both stably 
and unstably stratified. Reynolds numbers ranged from 370000 to 740000. Measure- 
ments of velocity were made with a hot-wire anemometer and measurements of 
temperature with a platinum resistance element which had a diameter of 0.5,um 
and a length of 1 mm. Thirteen runs ranging in length from 78 to 238 s were analysed. 

Spectra of velocity fluctuations are consistent with previously reported universal 
forms. Spectra of temperature, however, exhibit an increase in slope with increasing 
wavenumber as the maximum in the one-dimensional dissipation spectrum is ap- 
proached. The peak of the one-dimensional dissipation spectrum for temperature 
fluctuations occurs at a higher wavenumber than that of simultaneous spectra of the 
dissipation of velocity fluctuations. It is suggested that the change in slope of the 
temperature spectra and the dissimilarity between temperature and velocity spectra, 
may be due to spatial dissimilarity in the dissipation of temperature and velocity 
fluctuations. The temperature spectra are compared with a theoretical prediction for 
fluids with large Prandtl number, due to Batchelor (1959). Even though air has a 
Prandtl number of 0.7, the observations are in qualitative agreement with predictions 
of the theory. The non-dimensional wavenumber a t  which the increase in slope occurs 
is about 0.02, in good agreement with observations in the ocean reported by 
Grant et ul. (1968). 

For the two runs for which the stratification was stable, the normalized spectra 
of the temperature derivative fall on average slightly below the mean of the spectra 
of the remaining runs in the range in which the slope is approximately one-third. 
Hence the Reynolds number may not have always been sufficiently high to satisfy 
completely the conditions for an inertial subrange. 

Universal inertial-subrange constants were directly evaluated from one-dimensional 
dissipation spectra and found to be 0.54 and 1.00 for velocity and temperature, 
respectively. The constant for velocity is consistent with previously reported values, 
while the value for temperature differs from some of the previous direct estimates but 
is only 20 % greater than the mean of the indirect estimates. This discrepancy may 
be explained by the neglect in the indirect estimates of the divergence terms in the 
conservation equation for the variance of temperature fluctuations. There is weak 
evidence that the one-dimensional constant, and hence the temperature spectra, 
may depend upon the turbulence Reynolds number, which varied from 1200 to 4300 
in the observations reported. 
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1. Introduction 
Investigations of high-frequency temperature and velocity fluctuations in flows 

with high Reynolds number have been reviewed by Monin & Yaglom (1975). The 
observational investigation reported below is very similar to that of Boston & Burling 
(1972). Therefore only the previous theory and observations which are essential to 
the logical development of the present paper are reviewed. 

Investigations of high-frequency velocity fluctuations in flows with high Reynolds 
number have established, within an uncertainty of about & 10% (Monin & Yaglom 
1975, p. 485), the value of the Kolmogorov constant a for the -Q-region of the one- 
dimensional velocity spectrum given by 

#,(k) = adk-8  (1)  

(Kolmogorov 1941), where 6 is the mean rate of dissipation of turbulent kinetic energy 
per unit mass and k is the downstream radian wavenumber. CD, is defined such that 

where ?is the variance of the downstream velocity fluctuations. If the turbulence is 
locally isotropic for scales at which dissipation is significant, 6 is given by 

B = 15~(au/ax)~. (3) 

By use of (2), e can be related to the derivative spectrum b y  

c = 1 5 ~  #,.(k)dk, l o W  (4) 

where x is the downst,ream space co-ordinate, up is the downstream spatial derivative 
of u, v is the kinematic viscosity and the overbar implies either a space or a time 
average. &(k) is referred to as the one-dimensional dissipation spectrum or, in t,his 
paper, the dissipation spectrum. The spatial derivative may be converted to a time 
derivative by use of Taylor’s hypothesis (Monin & Yaglom 1975, p. 449). 

Observations le.g. Boston & Burling 1972) have also supported the prediction by 
Kolmogorov (1941) that for sufficiently high Reynolds numbers the one-dimensional 
velocity spectrum for the locally isotropic scales will have the form 

where ks ( = (4~3)’) is the Kolmogorov wavenumber and F (  k/k,) is auniversal function. 
A similar relation follows for the dissipation spectrum: 

(6) 

Kolmogorov (1962) revised the classical theory (Kolmogorov 1941) to account for 
the variability of E .  The revised theory suggests that the shape of the velocity spectrum 
is not universal, but depends on the turbulence Reynolds number. However, theory 
(Yaglom 1966; Wyngaard & Tennekes 1970) suggests that the dependence is weak and 
difficult to detect observationally. 

k2#,(k) = ~ : ( E V ’ ) *  (k/ks)2 F(k /ks ) .  
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Arguments of the type advanced by Kolmogorov (1941) for velocity fluctuations in 
high Reynolds number flows have also been advanced for fluctuations of scalars 
(Oboukhov 1949; Corrsin 1951; Batchelor 1959). These arguments lead to relations 
analogous to those for velocity. For a sufficiently high Reynolds number, there is 
predicted a -#-region of the one-dimensional spectrum of temperature given by 

$,(k) = /3E-kok-t, (7) 

where /3 is a universal constant whiIe E ,  is the mean rate of dissipation of turbulent 
temperature fluctuations (4s) and is given by 

where D, is the thermal diffusivity and 8’ is the downstream spatial derivative of 8. 
$,(k) is defined such that 

lom $,(k)dk = @, 

where @is the variance of turbulent temperature fluctuations in the direction of the 
mean flow. We also have the prediction that, for the range of scales which are locally 
isotropic, 

$e(k)  = ~ e ( v ’ / e ~ ) i H ( p r ,  k/ks) ,  (11)  

where H is a universal function and Pr is the Prandtl number ”/Do. 
It should be noted that the definitions of a and /? vary among authors depending 

on whether a factor of Q is included on the right side of (10) or whether one defines 
e, as the dissipation of @ or 4@. Variations also occur owing to the definition of k as 
either a radian or non-radian wavenumber. Paquin & Pond (1971) discuss these 
variations. The convention adopted here is also that of Monin & Yaglom (1975). 

The universal constant p defined in (7) is not nearly so well determined as the corres- 
ponding constant for velocity spectra. Only a few estimates of /3 have been reported 
which were determined by measurement of temperature and velocity fluctuations to 
small enough scales to estimate E and E ,  by use of (4) and (9). Gibson, Stegen & 
Williams (1970) report p = 2.3 from measurements over the sea while Boston & Burling 
(1972) report /3 = 1.6 from measurements over a mudflat. Clay (1973) reports values 
of /3 ranging from 0.8 to 1-3 determined from laboratory measurements in air, water 
and mercury and a value of /3 equal to 1.6 determined from measurements in the 
atmosphere. 

Gibson & Schwarz (1963) estimated /3 = 0.7 from laboratory measurements in 
air and water. The dissipation rates of temperature and velocity fluctuations were 
determined from the decay of the fluctuations downstream from a grid. 

There have been many indirect experimental estimates of /I. The indirect determina- 
tions are usually based on estimating e, as a residual in the conservation equation for 
turbulent temperature fluctuations (e.g. Wyngaard & Cot6 1971), often with neglect 
of the divergence terms. Another indirect method is based on relating /3 to the second- 
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and third-order moments of the temperature and velocity fluctuations in the inertial 
subrange (Paquin & Fond 1971). Monin & Yaglom (1975) conclude from a review of 
the indirect estimates that P is near 0.75. 

Batchelor (1959) suggested a universal, theoretical temperature spectrum valid for 
fluids with large Prandtl number and for wavenumbers greater than k,, where k ,  
is defined as the high-wavenumber termination of the inertial subrange. The one- 
dimensional form of this spectrum was given by Gibson & Schwarz (1963): 

where B = (2q) t  klk,, k, = Batchelor’s characteristic wavenumber = (~/uDi)*,  N ( B )  
= normal probability density function = (2n)-*exp ( - +Bz) and q = universal con- 
stant related to the effective average value y of the least principal rate of strain 
= - I/y(e/v)*. Equation (7) is valid for wavenumbers less than k,.  For values of k 
which are sufficiently small, (13) reduces approximately to 

@e(k) = i Q v * d s e k - l ,  (14) 

which is called the viscous-convective subrange. For increasing wavenumber the 
viscous-convective subrange is followed by an exponential decrease of $ ( k ) .  From 
(7)  and (14) one may obtain the relation 

P = 2q(k*Ik?)f (15) 

where p, q and k*/ks are all universal. 
Batchelor suggested that q would be about 2 and that k*/ks would be of order one. 

Gibson & Schwarz (1963) found k*/ks to be about 0.1 and q = 2 from laboratory 
measurements. Gibson, Lyon & Hirschsohn (1970) found values of 0.03 and 0.04 
for k*lk8 but did not estimate p or q .  Grant et al. (1968) found k,/k,  to be equal to 
0.024 and q to about 4 from measurements in the open ocean and in a tidal channel. 
Batchelor’s (1959) theory was not intended to apply to measurements in air (Pr  = 0.7). 
However, E. A. Novikov (see Monin & Yaglom 1975, p. 441) has suggested that the 
theory may be valid in fluids having Pr of order one. 

Van Atta (1971, 1973) investigated theoretically the effect of intermittency on the 
temperature spectrum and structure function in the inertial subrange. His approach 
is similar to that of Oboukhov (1962), Kolmogorov (1962) and Gurvich & Yaglom 
(1967), who suggested modifications to the velocity structure function due to fluc- 
tuations in dissipation. Van Atta suggested that the temperature structure function 
depends on the correlation p ( r )  between fluctuations in the dissipation of temperature 
and velocity averaged over a volume with radius T .  From dimensional arguments and 
by assuming the joint probability of temperature and velocity dissipations to be 
bivariate lognormal, he arrived at  an expression for the temperature structure function 
in the inertial subrange. His results can be shown to be equivalent to a prediction of 
the slope of the temperature dissipation spectrum in the inertial subrange given by 

m = 9(1+8P-PP), (16) 

where /I is a constant appearing in the lognormal probability distributions for the 
dissipation rates, assumed the same for both velocity and temperature. For no vari- 
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ability in dissipation rates, p = 0 and m reduces to one-third. Measurements (see 
Wyngaard & Pao 1971) indicate p N 0.5. Thus 

m = H Q - 3 P ) .  (17) 

As p decreases, m increases, taking the classical value of one-third for p = 8. 
Motivated by the uncertainty in the value of /3 and the form of the temperature 

spectrum at large wavenumbers, observations of temperature and velocity fluctuations 
were obtained over a horizontally uniform terrestrial site and from these /3 was deter- 
mined directly by use of (4), (7) and (9). It is the purpose of this paper to report these 
observations and subsequent analyses. 

2. Instrumentation 
Determination of the viscous and thermal rates of dissipation directly from measure- 

ments of velocity and temperature in the atmospheric boundary layer imposes certain 
requirements on the instrumentation to be used. The maximum dimensions of the 
sensors must not be greater than the typical Kolmogorov microscale (about 1 mm 
for both temperature and velocity) and the frequency response must be sufficient to 
resolve the smallest scales as they are advected past the sensors by the mean flow 
(about 2000Hz). The noise of the instrumentation must be small compared with 
typical Kolmogorov microscales for velocity and temperature ( -  3 cm/s and - 0.005 "C respectively). 

The instrumentation requirements for velocity measurements pose no difficulty 
since there are several commercially available hot-wire ar hot-film anemometer 
systems which are suitable. A Thermo-Systems Model 1054 A anemometer was 
employed in the observations reported here. The sensing element was a tungsten 
wire of diameter 4 pm and length 1.25 mm. 

The sensor chosen for the temperature measurements was a platinum wire wit.h a 
diameter of 0.5 pm and a length of 1 mm. The sensor was constructed by soldering a 
silver-jacketed (Wollaston) wire to conventional hot-wire anemometer needle sup- 
ports and then etching away the silver over a 1 mm section to expose the platinum. 
The frequency response of the sensor estimated from the relation of Sandborn (1972) 
is approximately 4000 Hz in still air. The sensor resistance was measured with a 
100 kHz a.c. symmetrical bridge constructed especially for the purpose. A discrete 
differential transistor pair was employed in the first-stage amplifier to maximize 
the signal-to-noise ratio. The current through the sensor was 100 pA. The velocity 
sensitivity of the temperature sensor estimated from an expression due to Wyngaard 
(1971 b )  was 0.00006 "C/(cm s-l). The noise of the system measured over a 10 kHz 
bandwidth was equivalent to 0.005 "C r.m.5. For a more detailed description, see 
Williams ( 1974). 

After suitable amplification and offsets, the temperature and velocity signals were 
recorded in frequency-modulated form on separate tracks of a Hewlett-Packard 
model 3955 magnetic tape-recorder operated at  a speed of 15 in .Is. Also recorded were 
electronically differentiated temperature and velocity signals. Differentiation en- 
hances the signal-to-noise ratio of the recording in the high-frequency part of the 
spectrum. The cut-off frequency of the differentiator was 2000 Hz. 



552 R. M .  Williams and C .  A .  Paulson 

3. Observations 
Observations were made near Corvallis, Oregon, during the summer of 1973 over a 

nearly level field of rye-grass stubble. Considerable straw was scattered over the 
stubble. For the observed wind directions the terrain upwind of the location of the 
measurements was uniform to distances in excess of 1.5 km. Conditions were dry with 
few clouds. Mean air temperatures ranged from 36 "C during the day to 25 "C at night. 

The instruments were mounted at  a height of 2 m on a portable mast. The tem- 
perature and velocity sensors were mounted in the same horizontal plane, separated 
by about 8 cm, with the hot-wire probe aligned vertically. In  addition to the wind 
velocity measured by the vertical hot-wire anemometer, longitudinal and vertical 
components were measured with an X-wire sensor. These measurements were used 
to derive estimates of the stress and heat flux for use in estimating stability. The wind 
speed and direction were also measured with a cup anemometer and vane on the 
same mast. The instrument mount could be rotated about a vertical axis to maintain 
sensor orientation into the wind. Signals from each sensor were transmitted by cable to 
an instrument hut housing signal-conditioning and recording equipment. The hut 
was located approximately 30 m downwind of the mast. 

About 10 h of data on 14 magnetic tapes were recorded over a period of two days. 
Conditions were both unstably and stably stratified. Wind speeds ranged from 2 to 
6 m/s. 

4. Analysis and results 
The first step in the analysis was the selection of suitable sections of the data for 

processing. Economic constraints limited the total amount of data analysed to about 
30 min (about 30 million samples after digitizing). The computation of ee as a function 
of the averaging time indicated that, because of the intermittency of the temperature 
derivative, records had to be a t  least 1 min in length to yield representative values of 
eg. Strip-chart recordings of the signals were examined to select periods which were 
free of malfunctions of instrumentation and during which the mean wind speed and 
direction remained nearly constant. Sections 4 min long were selected from each of 
six data tapes and sections 1.3 min long were selected from each of seven other tapes 
for a total of 13 runs. This selection included conditions of both stable and unstable 
stratification. 

An example of a strip-chart recording of velocity and temperature together with 
their derivatives is shown in figure 1. The highly intermittent nature of both velocity 
and temperature derivatives is evident. However, the temperature derivative appears 
more intermittent than velocity derivatives as was always the case. The bursts of 
high-frequency fluctuations in temperature and velocity are correlated. The correla- 
tion would probably have been even higher had the probes been closer together. 

The sections of data selected for analysis were converted from analog to digital 
form by use of a hybrid computer (Electronic Associates, Inc. 540/680) at a sampling 
rate of 4000 samples/s. The analog signals were low-pass filtered a t  2000 Hz prior to 
digitizing to prevent aliasing. 

Spectra were computed by use of a general purpose digital computer. Each run was 
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Velocity . 

FIGURE 1. Typical strip-chart recording of turbulent temperature and velocity 
and their derivatives under unstable conditions. 

divided into subsections of 8192 samples. The Fourier coefficients and spectral esti- 
mates of the time series in each subsection were computed. The estimates from all of 
the subsections were then averaged. Further smoothing was performed by averaging 
spectral estimates within 24 non-overlapping frequency bands, each band an equal 
interval on a logarithmic scde. The standard deviation of each averaged spectral 
estimate was used to calculate the 95% confidence intervals assuming a chi-squared 
probability distribution. Taylor’s hypothesis was applied to convert the frequency 
spectra to wavenumber spectra. 

Figures 2 and 3 show spectra of velocity and temperature derivatives (commonly 
referred to as dissipation spectra) for run RY25C. The spectra are very smooth to 
2000 Hz. A region with slope (4) consistent with the prediction for the inertial sub- 
range is clearly evident in both spectra. However, the temperature-derivative 
spectrum shows a marked increase in slope as the peak is approached. It should 
also be noted that the peak of the temperature-derivative spectrum is a t  a higher 
frequency than the peak of the velocity-derivative spectrum, i.e. the scales a t  which 
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FIGURE 4. The variation of the Kolmogorov constants u and with 
turbulence Reynolds number. 

the dissipation of temperature fluctuations is a maximum are smaller than the scales 
associated with the maximum velocity dissipation. 

The dissipation spectral estimates a t  the lowest six frequencies in figures 2 and 3 
were obtained from the spectral estimates by use of the relation 

where x represents either u or 8. Replacement of the low-frequency estimates obtained 
directly from the differentiated signals was necessary because of low-frequency 
noise introduced by the differentiating circuits. A correction was also made in the 
spectra of the differentiated temperature and velocity signals for high-frequency noise. 
This correction was made by subtracting from the uncorrected spectra the spectra 
computed during ‘quiet’ periods, i.e. periods when the dissipation was much less than 
the mean. Table 1 indicates the extent of the noise contribution to e0 before correction. 

The spectral estimates have also been corrected for various other factors including 
aliasing, anti-alias filter response, differentiator deviation from the ideal, spatial 
averaging by the sensor and deviations from Taylor’s hypothesis. The combined 
effect of the first three factors was negligible except at the highest three frequencies 
and hence had a negligible ( < 1%) effect on 8, eg, a and /3. 

The corrections for spatial averaging due to finite sensor length for both velocity 
and temperature were based on the work of Wyngaard (1968, 1971a).  For both velo- 
city and temperature, the sensor length was about twice the microscale. This resulted 
in significant spectral underestimates over about the highest decade of frequency 
with the correction increasing with increasing frequency to a typical maximum of 

The error in the spectral estimates due to fluctuating convection velocities causing 
20%. 
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FIGURE 5. Variation of one-dimensional Kolmogorov constant for temperature aa a function of 
normalized frequency (with 95 % confidence intervals). $0 = pe-*sek-@. 
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FIGURE 6. Variation of one-dimensional Kolmogorov constant for velocity as a function of 

normalized frequency (with 96 % confidence intervals). $" = as8k-t. 
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FIQURE 7. Composite normalized velocity spectra compared with Nasmyth (1970, circles). 

inaccuracy in Taylor’s hypothesis was estimated from a model developed by Lumley 
(1965). For the turbulence intensities encountered ( N 20 yo) the spectral estimates 
were too large at  frequencies below the dissipation peak (by about 3 yo) and at higher 
frequencies (by as much as 50 yo). 

The effects of these individual corrections on the rates of dissipation and Kolmogorov 
constants were less than 15 yo and when combined they tended to offset one another, 
so that the overall spectral correction was about 4 Yo for the inertial-subrange spectral 
levels, - 13 yo for the mean kinetic energy dissipation rate, - 3 yo for the mean thermal 
dissipation rate, + 5 yo for a and - 2 yo for /3. An example of the magnitude of the 
corrections can be seen in figure 3. 

Estimates of e and c0 were obtained by integrating spectra of the derivative signals 
[(4) and (9)]. These values, together with the computed velocity and temperature 
spectra in the -% range, enable calculation of the universal constants a and /3 for 
each run [(1) and (7)]. A summary of the estimated values is given in table 1 together 
with the conditions for each run. All averages were computed over the length of the 
run. The Monin-Oboukhov length L is defined by 

where w is the vertical velocity component, T the mean absolute temperature, K von 
KBrmBn’s constant (0-4) and g the gravitational acceleration. 

The variation of /3 and a with the turbulence Reynolds number Re, is shown in 
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FIGURE 9. Composite normalized temperature spectra. 



560 R. M .  Williams and C. A .  Paulson 

._ 
0 

0 

0 '  

e -  
t 

o 0  

0 

I I I I I I 

- 6  - 4  - 2  0 

l o g , o f / f ;  

FIGURE 10. Composite normalized temperature-derivative spectra (temperature dissipation 
spectra) compared with Boston & Burling (1972, run 202( 1) D, open circles) and Gibson, Stegen 
& Williams (1970, filled circles). 

figure 4. Re,, is equal to A(U2)*/v, where A is the Taylor microscale, defined by 
-~ 

A2 = u2/(aU/az)? 

There is no significant variation in a. However there is an indication that /3 increases 
with Re,, suggesting that the turbulence may not have been locally isotropic, at  least 
for Re, < 3000. The evidence for the variation in p is uncertain because of the large 
corrections for noise applied to several of the runs at  the lower values of Re,. However 
the correction is based on subtracting noise spectra computed during quiet periods 
from the uncorrected spectra, which is likely to result in an anomalously high estimate 

The increase in slope of the temperature spectra as the frequency of maximum 
dissipation is approached is more clearly seen in figure 5, which is a plot of the Kol- 
mogorov constant ,8 us. frequency normalized by the Kolmogorov microscale fre- 
quency f,, given by 

of p. 

- - 
U U f, = ( € / V 3 ) 4  = ks. 

Figure 6 shows a similar plot of a us. normalized frequency which reveals a much 
smaller and perhaps insignificant effect. Changes in slope of the type shown in figure 5 
were not discernible in the results of Boston & Burling (1972) or Gibson, Stegen & 
Williams (1970). 

Figures 7-10 show the spectra from 9 runs normalized according to (5) and (11) .  
These data do appear to verify the existence of universal spectral functions for both 
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FIGURE 11. Comparison of Batchelor's (1959) prediction with observed spectra 

of the derivative of temperature. 

velocity and temperature. Included on these plots are the results of Nasmyth (1970), 
Boston (197O), Gibson, Stegen & Williams (1970) and Boston & Burling (1972). 

Even though the Prandtl number of air is 0.7, it may be useful to compare Batche- 
lor's prediction (13) with observations because of the qualitative similarity between 
them (i.e. an increase in slope near the end of an inertial subrange) and because the 
arguments underlying the theory may be valid outside the range for which they were 
originally intended. A comparison with the observed dissipation spectra is shown in 
figure 11 for q = 4 and 6. The lower value of q results in fair agreement with the 
observations a t  the higher wavenumbers while the curve with q = 6 agrees better at 
lower wavenumbers. The value of k*/k8 for q = 6 is 0.023, determined by matching 
(7) with (14) and taking p = 1.00. This value of kJkS is in good agreement with the 
observed break in the slope (approximately 0.02). The relation between ,8, q and k*/ks 
given in (15) is valid only if there is a range in which the dissipation spectrum has a 
slope of approximately one. In  figure 11, the exponential cut-off in Batchelor's pre- 
diction occurs a t  wavenumbers low enough to prevent a slope of one. 

19 FI.M 83 
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5. Discussion 
There is good agreement between observed velocity spectra (figures 7 and 8) and 

the suggested universal forms (5) and (6). There is remarkably little scatter in the 
non-dimensional spectra plotted in figure 7, particularly when one recalls that each 
plotted point is an independent spectral estimate. The agreement of the observations 
in figure 7 with Nasmyth’s (1970) observations is excellent except at the highest wave- 
numbers, where the difference may arise because no corrections were made for noise 
in our velocity spectra. The agreement of the observed dissipation spectra (corrected 
for noise) with that of Boston (1970) is good except a t  the maximum of the spectrum, 
where Boston’s observations are more peaked. 

The value of the universal constant a, defined by (1)-(3), was determined to be 
0.54 f 0.01 (averaged over 0.0013 < k/k8 < 0.013), which is in good agreement with 
several direct estimates. For example, Boston & Burling (1972) found 0.51 from 
atmospheric observations, Pond et al. (1966) summarized four investigations in the 
atmosphere, ocean and laboratory to find 0.48, Nasmyth (1970) found 0.56 from 
measurements in the ocean and Wyngaard & Cot6 (1971) found 0.50 from atmo- 
spheric measurements. In  less good agreement are estimates of 0.65 reported by Kistler 
& Vrebalovich (1966) from laboratory observations of grid turbulence, 0.65 reported 
by Shieh, Tennekes & Lumley (1971) from atmospheric measurements and 0.69 
reported by Gibson, Stegen & Williams (1970) also from atmospheric measurements. 
As discussed in Schedvin, Stegen & Gibson (1974), at least some of these estimates 
may be too high owing to the effect of attenuation of the small scales caused by finite 
sensor length. 

Although the scatter is greater than for velocity spectra, the non-dimensional plots 
(figures 9 and 10) of temperature spectra appear to satisfy the predictions [ ( l l )  and 
(12)] of universal similarity reasonably well. The scatter may be partly related to the 
higher degree of intermittency in the turbulent temperature fluctuations than in the 
corresponding fluctuations of velocity. Part of the scatter might also be accounted 
for by the evidence shown in figure 4 that the Reynolds number might not have been 
sufficiently high for the existence of an inertial subrange. This possibility is particu- 
larly strong for runs with a turbulence Reynolds number below 2000. There is an 
indication in figure 10 that spectra from runs RY21C and RY29C fall systematically 
below the mean of all of the observations. These are the only two runs with stable 
stratification. Kaimal et al. (1972) report that a ratio of + between the transverse and 
longitudinal spectral levels is observed a t  wavelengths of order equal to or less than the 
height z above the ground under unstable stratification but a t  wavelengths of order 
equal to or less than &z under stable conditions. Hence conditions for local isotropy 
may not have been fulfilled for a substantial part of the low-frequency end of the two 
stable runs. There is, however, no evidence of a departure of the velocity spectra from 
the universal form for these runs. 

Figure 10 shows poor agreement with the results of Gibson, Stegen & Williams 
(1970) and fair agreement with Boston & Burling (1972). The disagreement may in 
part be explained by contamination of the observations of Gibson, Stegen & Williams 
and Boston & Burling by noise. The noise corrections made by Boston & Burling 
were typically much larger than those required in our case. The observations of 
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Gibson, Stegen & Williams were made over the sea, where the amplitude of turbulent 
temperature fluctuations was approximately an order of magnitude smaller than the 
largest amplitudes which we observed over land. Schmitt, Friehe & Gibson (1977) 
attribute spectral variations in the Gibson, Stegen & Williams (1970) data to sensi- 
tivity of the temperature sensor to humidity fluctuations. Recent observations of 
temperature spectra over land by Champagne et al. (1977) are in good agreement 
with our observations in figures 9 and 10. The Champagne et al. observations show a 
change in slope consistent with the observations reported here. 

The mean value of p estimated from our observations is 1.00, which is in poor 
agreement with Gibson, Stegen & Williams (1970), who found a value of 2.3, and 
with Boston & Burling (1972), who found p = 1.6. There is however fair agreement 
with the direct estimate by Champagne et al. (1977) of /3 = 0-82. There is also fair 
agreement with the indirect estimates summarized by Monin & Yaglom (1975, p. 
504), who suggest that p = 0.75. Many of the indirect estimates of p art3 based on 
approximating the conservation equation for the variance of turbulent temperature 
fluctuations by neglecting the divergence of the vertical transport o fF ,  i.e. by assuming 
that local production equals local dissipation. Observations reported by Wyngaard 
& Cot6 (1971) suggest that there is a local excess of export over import of the trans- 
port of e'i of about 10 % of the production at zIL = - 0.1. Correction of the indirect 
estimates of /3 for neglect of the transport term would therefore reduce the difference 
between the indirect estimates and the direct estimate reported here. 

The variation of ,4 with turbulence Reynolds number shown in figure 4 is puzzling, 
particularly because there is no significant variation in a. If the turbulent velocity 
fluctuations are locally isotropic, it is difficult to understand how the temperature 
fluctuations could be anisotropic. It is possible that the velocity fluctuations were not 
locally isotropic in the + $-range, but that the estimate of a was not strongly affected. 
Pond et at. (1966) find little variation in a over a wide range of Reynolds numbers 
even though the ratios of streamwise and cross-stream velocity spectra in the -9- 
range did not always fulfil the requirement for isotropy. The skewness of the temporal 
temperature derivatives averaged to - 0.8, indicating that a departure from isotropy 
may be a factor in explaining the variation of p with Re,. The variation shown in 
figure 4 agrees with an estimate of ,8 = 0.7 determined by Gibson & Schwarz (1963) 
from laboratory measurements in which Re, was about 100. Figure 4 suggests that 
the limiting or correct value of ,8 is a t  least as large as 1.05 (the average value of ,8 for 
Re, > 3000). Clay (1973) summarizes measurements of p and its variation with 
Reynolds number which also show (on average) that /3 increases with Re. 

The observed increase in slope with increasing wavenumber of the temperature 
spectra (figures 5 and 11)  beginning at  normalized wavenumbers of about 0.02 was 
unexpected and puzzling. Previous observations in the atmosphere (Boston & Burling 
1972; Gibson, Stegen & Williams 1970) do not show this characteristic. It was first 
thought that the change in slope was due to errors in the measurements or analysis. 
However, a search for sources of errors discounted several possibilities and the validity 
of the results was further supported by measurements of Champagne et al. (1977), 
which showed a similar change in slope. A plausible qualitative explanation is the 
suggestion by Schmitz (1968) that spatial dissimilarity in the dissipation of tempera- 
ture and velocity fluctuations would result in a change in slope of the temperature 
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spectrum in fluids with Pr of order one qualitatively similar to that predicted by 
Batchelor (1959). The explanation for the increase in slope of the temperature spec- 
trum of fluids with Pr % 1 is that, for scales smaller than the Kolmogorov microscale, 
all of the velocity fluctuations have dissipated, while temperature fluctuations remain 
which are transferred to smaller and smaller scales by the larger-scale deformation 
of the fluid until the gradients become so large that they are dissipated by molecular 
diffusion. In the case of fluids with Pr of order one, it is hypothesized that some regions 
having large small-scale temperature fluctuations are not associated with similar 
velocity fluctuations. These regions must rely on slower large-scale deformation to 
increase the temperature gradients until dissipation occurs. 

Spatial dissimilarities in the small-scale structure of the flow may be caused by 
dissimilarities in the production and transport of turbulent velocity and temperature 
fluctuations on larger scales. The terms in the budget equations for the velocity and 
temperature variance (see e.g. Wyngaard & Cot6 1971) are not similar. For example, 
pressure forces play a role in the transport of momentum, while there is no corres- 
ponding mechanism for temperature. As a second example, consider an unstably 
stratified atmospheric shear layer near the ground. It is observed that the vertical 
gradient of mean temperature decreases faster with height than the gradient of mean 
velocity and may approach zero for sufficiently large heights (see, for example, 
Businger et al. 1971). Therefore the production of turbulent temperature fluctuations, 

where w is the vertical turbulent velocity component and 0 is the mean potential 
temperature, decreases more rapidly with increasing height than the production of 
velocity fluctuations, given by 

-au g -  
uw - +- ew, 

a2 0 

where U is the mean velocity. Assuming that divergence of vertical transport of 
temperature and velocity fluctuations is small compared with production, one would 
expect large-scale descending turbulent eddies observed a t  a fixed height to have an 
excess of small-scale velocity fluctuations over temperature fluctuations when com- 
pared with ascending eddies. This expectation is consistent with the observed higher 
degree of intermittency (quiet periods, larger kurtosis) in the small-scale temperature 
structure when compared with the small-scale velocity structure (figure 1). 

There is fair agreement shown in figure 11 between the theory of Batchelor ( 1  959) 
and the observed temperature spectra even though the theory was intended for flows 
with larger Prandtl number. The non-dimensional wavenumber at which the break 
in slope of the temperature spectra occurs is predicted by Batchelor to be a universal 
constant k*/ks of order one. This may be compared with the results of this paper 
and oceanic observations by Grant et al. (1968), which show that k*lks = 0.02. Grant 
et aE. estimated that q is approximately equal to four, but they did not determine 
eo directly. If ones takes /3 = 1.0 and k,/ks = 0.02, (15) yields q = 6. This may be 
compared with Batchelor’s (1959) suggestion that q is equal to about two and obser- 
vations in the laboratory by Gibson & Schwarz (1963) yielding the same value. 
Gibson (1968) suggested on theoretical grounds that q is about 2 with lower and upper 
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bounds of 4 3  and 243 and that the corresponding value of plies in 1.4- 0.1 < /3 < 1.4 + 
0.6. However, Gibson’s arguments do not require k*/k8 to be a constant and indeed 
these estimates of q and j3 yield [by (15)] 0.21 - 0.05 < kJk8 6 0-21 + 0-02, which is 
about an order of magnitude larger than observations. Gibson & Schwarz found 
kJkS to be equal to about 0.1 as did Clay (1973), also from laboratory measurements 
in water. Gibson, Lyon & Hirschsohn (1970) found k*/ks to be approximately 25 
from laboratory measurements of conductivity fluctuations in water solutions down- 
stream from a sphere. These results suggest that the value of k*/ks may depend on the 
Reynolds number. This suggestion is consistent with the observation that high- 
frequency turbulent temperature fluctuations become more intermittent with increa- 
sing Re and therefore that the spatial dissimilarity in the dissipation of temperature 
and velocity fluctuations may occur a t  lower normalized wavenumbers. 

Examination of figure 11 shows that the slope of the temperature dissipation spec- 
trum changes from $ to about * over less than a decade of wavenumbers. This change 
corresponds to the dissipation correlation coefficient in Van Atta’s (1971, 1973) model 
(17) changing from to - 4. It is physically plausible that p( r )  may decrease with 
decreasing r .  Indeed, Antonia & Van Atta’s (1975) observations in the laboratory 
(Re, = 240) show p decreasing from 0.8 to 0.5 as rk8 decreases from 3000 to 6. How- 
ever, a large change from positive to negative values of p over a small range of r seems 
unlikely. 

The preceding discussion has pointed out progress in understanding turbulent 
microscale processes; however it has also revealed much of our ignorance. Many 
questions remain to be answered concerning the effects of Reynolds number, stability 
and anisotropy on the small-scale structure of turbulent flows. 
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